Graphene oxide monolayers as atomically thin seeding layers for atomic layer deposition of metal oxides.
نویسندگان
چکیده
Graphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and opens up numerous prospects for applications. In this work, a mild oxygen plasma treatment was used to oxidize graphene monolayers with well-controlled and tunable density of epoxide functional groups. This was confirmed by synchrotron-radiation photoelectron spectroscopy. In addition, density functional theory calculations were carried out on representative epoxidized graphene monolayer models to correlate the capacitive properties of GO with its electronic structure. Capacitance-voltage measurements showed that the capacitive behavior of Al2O3/GO depends on the oxidation level of GO. Finally, GO was successfully used as an ALD seed layer for the deposition of Al2O3 on chemically inert single layer graphene, resulting in high performance top-gated field-effect transistors.
منابع مشابه
Seeding atomic layer deposition of high-k dielectrics on epitaxial graphene with organic self-assembled monolayers.
The development of high-performance graphene-based nanoelectronics requires the integration of ultrathin and pinhole-free high-k dielectric films with graphene at the wafer scale. Here, we demonstrate that self-assembled monolayers of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) act as effective organic seeding layers for atomic layer deposition (ALD) of HfO(2) and Al(2)O(3) on epitaxi...
متن کاملAtomic Scale Study on Growth and Heteroepitaxy of ZnO Monolayer on Graphene
Atomically thin semiconducting oxide on graphene carries a unique combination of wide band gap, high charge carrier mobility, and optical transparency, which can be widely applied for optoelectronics. However, study on the epitaxial formation and properties of oxide monolayer on graphene remains unexplored due to hydrophobic graphene surface and limits of conventional bulk deposition technique....
متن کاملEvaluation of Graphene/WO3 and Graphene/CeOx Structures as Electrodes for Supercapacitor Applications
The combination of graphene with transition metal oxides can result in very promising hybrid materials for use in energy storage applications thanks to its intriguing properties, i.e., highly tunable surface area, outstanding electrical conductivity, good chemical stability, and excellent mechanical behavior. In the present work, we evaluate the performance of graphene/metal oxide (WO3 and CeO ...
متن کاملAtomic layer deposition on 2D transition metal chalcogenides: layer dependent reactivity and seeding with organic ad-layers.
This commmunication presents a study of atomic layer deposition of Al2O3 on transition metal dichalcogenide (TMD) two-dimensional films which is crucial for use of these promising materials for electronic applications. Deposition of Al2O3 on pristine chemical vapour deposited MoS2 and WS2 crystals is demonstrated. This deposition is dependent on the number of TMD layers as there is no depositio...
متن کاملAnodic Aluminum Oxide Templated Channel Electrodes via Atomic Layer Deposition
Dye-sensitized solar cells (DSSCs) utilize high surface area metal oxide sintered particle networks to absorb molecular dyes and transport injected charge carriers. While this sintered particle architecture allows liquid electrolyte DSSCs to achieve efficiencies up to 11%, slow charge transport through the semiconductor network limits the amount of modification that can be made to the electroly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 24 شماره
صفحات -
تاریخ انتشار 2015